Exercise 28

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$
x^{2}+2 x y+4 y^{2}=12, \quad(2,1), \quad(\text { ellipse })
$$

Solution

The aim is to evaluate y^{\prime} at $x=2$ and $y=1$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}+2 x y+4 y^{2}\right)=\frac{d}{d x}(12) \\
\frac{d}{d x}\left(x^{2}\right)+2 \frac{d}{d x}(x y)+4 \frac{d}{d x}\left(y^{2}\right)=0 \\
(2 x)+2\left\{\left[\frac{d}{d x}(x)\right] y+x\left[\frac{d}{d x}(y)\right]\right\}+4\left[2 y \cdot \frac{d}{d x}(y)\right]=0 \\
2 x-2\left[(1) y+x\left(y^{\prime}\right)\right]+4\left(2 y y^{\prime}\right)=0 \\
2 x-2 y-2 x y^{\prime}+8 y y^{\prime}=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
\begin{gathered}
2 x-2 y=(2 x-8 y) y^{\prime} \\
y^{\prime}=\frac{2 x-2 y}{2 x-8 y} \\
y^{\prime}=\frac{x-y}{x-4 y}
\end{gathered}
$$

Evaluate y^{\prime} at $x=2$ and $y=1$.

$$
y^{\prime}(2,1)=\frac{(2)-(1)}{(2)-4(1)}=-\frac{1}{2}
$$

Therefore, the equation of the tangent line to the curve represented by $x^{2}+2 x y+4 y^{2}=12$ at $(2,1)$ is

$$
y-1=-\frac{1}{2}(x-2)
$$

Below is a graph of the curve and the tangent line at $(2,1)$.

